Abstract
Recent developments in smart mining technology have enabled the production, collection, and sharing of a large amount of data in real time. Therefore, research employing machine learning (ML) that utilizes these data is being actively conducted in the mining industry. In this study, we reviewed 109 research papers, published over the past decade, that discuss ML techniques for mineral exploration, exploitation, and mine reclamation. Research trends, ML models, and evaluation methods primarily discussed in the 109 papers were systematically analyzed. The results demonstrated that ML studies have been actively conducted in the mining industry since 2018, mostly for mineral exploration. Among the ML models, support vector machine was utilized the most, followed by deep learning models. The ML models were evaluated mostly in terms of their root mean square error and coefficient of determination.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献