Optimizing the Flocculation Effect of Cationic Polyacrylamide Prepared with UV-Initiated Polymerization by Response Surface Methodology

Author:

Fu Chaochen1,Zhang Zhengan2,Li Yuying2,Li Lin2,Wang Hongtian2,Liu Shaobo2,Hua Xia3,Li Bailian24ORCID

Affiliation:

1. School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China

2. International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resources and Environment Engineering, Nanyang Normal University, Nanyang 473061, China

3. Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd., Chengdu 611100, China

4. Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA

Abstract

Cationic polyacrylamide (CPAM) is a commonly used flocculant for water treatment. Factors that affect the flocculation effect and can be controlled manually include the type and dosage of CPAM, wastewater pH, stirring time and settling time, and their reasonable setting is critical to the flocculation effect of CPAM. In this paper, the optimal flocculation conditions of a novel CPAM were studied. First, single-factor tests were conducted to preliminarily explore the optimal range of factors that influence CPAM flocculation, and then response surface methodology (RSM) tests were performed to accurately determine the optimums of the influencing factors. The results showed that the flocculation effect was better when the intrinsic viscosity was larger or the cationic degree of CPAM was higher. The CPAM dosage, wastewater pH and stirring time significantly impacted the flocculation effect, and inflection points were observed. A model that could guide CPAM-8.14-40.2 flocculation was obtained by RSM tests. The model optimization showed that the optimal flocculation conditions of CPAM-8.14-40.2 for treating wastewater prepared with kaolin were as follows: the CPAM dosage, wastewater pH and stirring time were 5.83 mg·L−1, 7.28, and 5.95 min, respectively, and the turbidity of the treated wastewater was reduced to 6.24 NTU.

Funder

Key research and development projects of Henan Province

Higher Discipline Innovation and Talent Introduction Base of Henan Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3