Abstract
The inter-satellite relative navigation method—based on radio frequency (RF) range and angle measurements—offers good autonomy and high precision, and has been successfully applied to two-satellite formation missions. However, two main challenges occur when this method is applied to multi-microsatellite formations: (i) the implementation difficulty of the inter-satellite RF angle measurement increases significantly as the number of satellites increases; and (ii) there is no high-precision, scalable RF measurement scheme or corresponding multi-satellite relative navigation algorithm that supports multi-satellite formations. Thus, a novel multi-satellite relative navigation scheme based on inter-satellite RF range and angle measurements is proposed. The measurement layer requires only a small number of chief satellites, and a novel distributed multi-satellite range measurement scheme is adopted to meet the scalability requirement. An inter-satellite relative navigation algorithm for multi-satellite formations is also proposed. This algorithm achieves high-precision relative navigation by fusing the algorithm and measurement layers. Simulation results show that the proposed scheme requires only three chief satellites to perform inter-satellite angle measurements. Moreover, with the typical inter-satellite measurement accuracy and an inter-satellite distance of around 1 km, the proposed scheme achieves a multi-satellite relative navigation accuracy of ~30 cm, which is about the same as the relative navigation accuracy of two-satellite formations. Furthermore, decreasing the number of chief satellites only slightly degrades accuracy, thereby significantly reducing the implementation difficulty of multi-satellite RF angle measurements.
Funder
National Natural Science Foundation of China
Primary Research and Development Plan of Zhejiang Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献