A Generative Adversarial Network (GAN) Technique for Internet of Medical Things Data

Author:

Vaccari IvanORCID,Orani Vanessa,Paglialonga AlessiaORCID,Cambiaso EnricoORCID,Mongelli Maurizio

Abstract

The application of machine learning and artificial intelligence techniques in the medical world is growing, with a range of purposes: from the identification and prediction of possible diseases to patient monitoring and clinical decision support systems. Furthermore, the widespread use of remote monitoring medical devices, under the umbrella of the “Internet of Medical Things” (IoMT), has simplified the retrieval of patient information as they allow continuous monitoring and direct access to data by healthcare providers. However, due to possible issues in real-world settings, such as loss of connectivity, irregular use, misuse, or poor adherence to a monitoring program, the data collected might not be sufficient to implement accurate algorithms. For this reason, data augmentation techniques can be used to create synthetic datasets sufficiently large to train machine learning models. In this work, we apply the concept of generative adversarial networks (GANs) to perform a data augmentation from patient data obtained through IoMT sensors for Chronic Obstructive Pulmonary Disease (COPD) monitoring. We also apply an explainable AI algorithm to demonstrate the accuracy of the synthetic data by comparing it to the real data recorded by the sensors. The results obtained demonstrate how synthetic datasets created through a well-structured GAN are comparable with a real dataset, as validated by a novel approach based on machine learning.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3