Carbon and Graphene Coatings for the Thermal Management of Sustainable LMP Batteries for Automotive Applications

Author:

Sequino LuigiORCID,Sebastianelli Gaetano,Vaglieco Bianca MariaORCID

Abstract

The increment of battery temperature during the operation caused by internal heat generation is one of the main issues to face in the management of storage systems for automotive and power generation applications. The temperature strongly affects the battery efficiency, granting the best performance in a limited range. The investigation and testing of materials for the improvement of heat dissipation are crucial for modern battery systems that must provide high power and energy density. This study presents an analysis of the thermal behavior of a lithium-polymer cell, which can be stacked in a battery pack for electric vehicles. The cell is sheltered with layers of two different materials: carbon and graphene, used in turn, to dissipate the heat generated during the operation in natural convection. Optical diagnostics in the infrared band is used to evaluate the battery surface temperature and the effect of the coatings. Experiments are performed in two operating conditions varying the current demand. Moreover, two theoretical correlations are used to estimate the thermal parameters of the battery with a reverse-logic approach. The convective heat transfer coefficient h and the specific heat capacity cp of the battery are evaluated and provided for the Li-ion battery under investigation for different coatings’ conductivity. The results highlight the advantage of using a coating and the effect of the coating properties to reduce the battery temperature under operation. In particular, graphene is preferable because it provides the lowest battery temperature in the most intense operating condition.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3