Extraction and Reconstruction of Arbitrary 3D Frequency Features from the Potassium Dihydrogen Phosphate Surfaces Machined by Different Cutting Parameters

Author:

Pang QilongORCID,Shu Zihao,Xu Youlin

Abstract

To comprehensively analyze the effect of cutting parameters on the 3D surface topography of machined potassium dihydrogen phosphate crystals, 2D power spectrum density and continuous wavelet transform are used to extract and reconstruct the arbitrary actual 3D frequency features of machined potassium dihydrogen phosphate crystal surfaces. The 2D power spectrum density method is used to quantitatively describe the 3D surface topography of machined potassium dihydrogen phosphate crystals. The continuous wavelet transform method is applied to extract and reconstruct 3D topographies of arbitrary actual spatial frequency features in machined surfaces. The main spatial frequency features fx of the machined surfaces are 0.0056 μm−1, 0.0112 μm−1, and 0.0277 μm−1 with the cutting depth from 3 μm to 9 μm. With the feed rate changing from 8μm/r to 18 μm/r, the main spatial frequency features fx are 0.0056 μm−1–0.0277 μm−1. With the spindle speed from 1300 r/min to 1500 r/min, the main spatial frequency features fx are same as the main spatial frequency features of the cutting depths. The results indicate that the variation of cutting parameters affects the main spatial frequency features on the 3D surface topography. The amplitudes of the spatial middle-frequency features are increased with the increasing of cutting depth and spindle speed. The spatial low-frequency features are mainly affected via the feed rate. The spatial high-frequency features are related to the measurement noise and material properties of potassium dihydrogen phosphate. The distributional directions of the frequency features in the reconstructed 3D surface topography are consistent with the distribution directions of actual frequency features in the original surface topography. The reconstructed topographies of the spatial frequency features with maximum power spectrum density are the most similar to the original 3D surfaces. In this machining, the best 3D surface topography of the machined KDP crystals is obtained with a cutting depth ap = 3 μm, feed rate f = 8 μm/r and a spindle speed n = 1400 r/min.

Funder

Jiangsu Key Laboratory of Advanced Manufacturing

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

1. Optomechanical analysis and performance optimization of large-aperture KDP frequency converter;Zhang;Opt. Laser. Technol.,2018

2. Description of the NIF Laser;Spaeth;Fusion Sci. Technol.,2016

3. Influence of raceway waviness on the level of vibration in rolling-element bearings;Adamczak;Bull. Pol. Acad. Sci. Technol.,2017

4. Prediction of Surface Roughness and Optimization of Cutting Parameters of Stainless Steel Turning Based on RSM;Xiao;Math. Probl. Eng.,2018

5. Research on Fault Feature Extraction Method of Rolling Bearing Based on NMD and Wavelet Threshold Denoising;Xiao;Shock Vib.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3