Predicting the Compressive Strength of Concrete Containing Fly Ash and Rice Husk Ash Using ANN and GEP Models

Author:

Al-Hashem Mohammed NajeebORCID,Amin Muhammad NasirORCID,Raheel Muhammad,Khan KaffayatullahORCID,Alkadhim Hassan Ali,Imran MuhammadORCID,Ullah ShahidORCID,Iqbal Mudassir

Abstract

Climate change has become trending news due to its serious impacts on Earth. Initiatives are being taken to lessen the impact of climate change and mitigate it. Among the different initiatives, researchers are aiming to find suitable alternatives for cement. This study is a humble effort to effectively utilize industrial- and agricultural-waste-based pozzolanic materials in concrete to make it economical and environmentally friendly. For this purpose, a ternary blend of binders (i.e., cement, fly ash, and rice husk ash) was employed in concrete. Different variables such as the quantity of different binders, fine and coarse aggregates, water, superplasticizer, and the age of the samples were considered to study their influence on the compressive strength of the ternary blended concrete using gene expression programming (GEP) and artificial neural networking (ANN). The performance of these two models was evaluated using R2, RMSE, and a comparison of regression slopes. It was observed that the GEP model with 100 chromosomes, a head size of 10, and five genes resulted in an optimum GEP model, as apparent from its high R2 value of 0.80 and 0.70 in the TR and TS phase, respectively. However, the ANN model performed better than the GEP model, as evident from its higher R2 value of 0.94 and 0.88 in the TR and TS phase, respectively. Similarly, lower values of RMSE and MAE were observed for the ANN model in comparison to the GEP model. The regression slope analysis revealed that the predicted values obtained from the ANN model were in good agreement with the experimental values, as shown by its higher R2 value (0.89) compared with that of the GEP model (R2 = 0.80). Subsequently, parametric analysis of the ANN model revealed that the addition of pozzolanic materials enhanced the compressive strength of the ternary blended concrete samples. Additionally, we observed that the compressive strength of the ternary blended concrete samples increased rapidly within the first 28 days of casting.

Funder

King Faisal University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3