Grinding Temperature and Surface Integrity of Quenched Automotive Transmission Gear during the Form Grinding Process

Author:

Jiang Xiaoyang,Liu Ke,Yan Yong,Li MaojunORCID,Gong PanORCID,He Hong

Abstract

Grinding burn is an undesired defect in gear machining, and a white layer is an indication of severe burn that is detrimental to gear surface performance. In this work, the influence of grinding parameters on the thickness of the white layer during form grinding of quenched transmission gear was investigated, and the microstructure evolution and mechanism of severe burn formation were analyzed. The grinding temperature increased with the grinding depth and grinding speed, with the highest level of ~290 °C. The thickness of the white layer exceeded 100 μm when the grinding depth was 0.03 mm, and the top layer was a plastic deformation layer followed by a fine-grained martensite layer. Coarse-grained acicular martensite was found at the interface between the white layer and softened dark layer. The mechanical effect and thermal softening mainly contributed to the formation of white layer stratification. The ground surface topography showed several scratches and typical grooves; when grinding depth increased to 0.03 mm, the grinding surface roughness Sa was relatively high and reached up to ~0.60 μm, mainly owing to severe plastic deformation under grinding wheel extrusion and the thermal effect.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3