Optimizing the ECAP Parameters of Biodegradable Mg-Zn-Zr Alloy Based on Experimental, Mathematical Empirical, and Response Surface Methodology

Author:

Alawad Majed O.ORCID,Alateyah Abdulrahman I.ORCID,El-Garaihy Waleed H.ORCID,BaQais AmalORCID,Elkatatny SallyORCID,Kouta Hanan,Kamel Mokhtar,El-Sanabary SamarORCID

Abstract

Experimental investigations were conducted on Mg-3Zn-0.6Zr alloy under different ECAP conditions of number of passes, die angles, and processing route types, aimed at investigating the impact of the ECAP parameters on the microstructure evolution, corrosion behavior, and mechanical properties to reach optimum performance characteristics. To that end, the response surface methodology (RSM), analysis of variance, second-order regression models, genetic algorithm (GA), and a hybrid RSM-GA were utilized in the experimental study to determine the optimum ECAP processing parameters. All of the anticipated outcomes were within a very small margin of the actual experimental findings, indicating that the regression model was adequate and could be used to predict the optimization of ECAP parameters. According to the results of the experiments, route Bc is the most efficient method for refining grains. The electrochemical impedance spectroscopy results showed that the 4-passes of route Bc via the 120°-die exhibited higher corrosion resistance. Still, the potentiodynamic polarization results showed that the 4-passes of route Bc via the 90°-die demonstrated a better corrosion rate. Furthermore, the highest Vicker’s microhardness, yield strength, and tensile strength were also disclosed by four passes of route Bc, whereas the best ductility at fracture was demonstrated by two passes of route C.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3