Abstract
Natural soil (NS)-based geopolymers (GPs) have shown promise as environmentally friendly construction materials. The production of ordinary Portland cement is known to release significant amounts of greenhouse gas (CO2) into the atmosphere. The main objective of this work is to synthesize a geopolymer (GP) from an uncommon aluminosilicate-based NS and a sodium silicate (SS) activating solution that would not only minimize the emission of harmful gases, but also offer improved mechanical strength. Samples of different compositions were produced by varying the wt.% of NS from 50% to 80% and adding a balancing amount of SS solution. The drying and curing of the samples were carried out in an electric oven at specific temperatures. The degree of geopolymerization in the samples was measured by Fourier transform infrared spectroscopy, and microstructural analysis was performed using a scanning electron microscope. Mechanical tests were conducted to evaluate the range of compressive strength values of the prepared GP samples. A minimum compressive strength of 10.93 MPa at a maximum porosity of 37.56% was observed in a sample with an NS to SS ratio of 1:1; while a ratio of 3:1 led to the maximum compressive strength of 26.39 MPa and the minimum porosity of 24.60%. The maximum strength (26.39 MPa) was found to be more than the reported strength values for similar systems. Moreover, an improvement in strength by a factor of three has been observed relative to previously developed NS-based GPs. It may be inferred from the findings that for the given NS, with almost 90% aluminosilicate content, the extent of geopolymerization increases significantly with its increasing proportions, yielding better mechanical strength.
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献