Responses of the Leaf Water Physiology and Yield of Grapevine via Different Irrigation Strategies in Extremely Arid Areas

Author:

Sun Ruifeng1,Ma Juanjuan1,Sun Xihuan1,Zheng Lijian1,Guo Jiachang1

Affiliation:

1. College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

The contradiction between water supply and demand has become increasingly prominent due to the large agricultural water consumption and low irrigation water use efficiency (IWUE) in the extremely arid area of Xinjiang, which needs to be solved by efficient irrigation. In this study, the effects of different irrigation levels (the lower and upper limits of irrigation (LULI) were 50–80%, 60–90%, and 70–100% of the field capacity (FC), respectively) under two irrigation methods (root zone irrigation (RZI) and furrow irrigation (FI)) on the photosynthetic physiology and yield of grape were analyzed to explore suitable irrigation schemes in extremely arid areas. The results show that the diurnal variation curve of the net photosynthetic rate (Pn) of grape leaves in the extreme arid region was not sensitive to the response of irrigation methods. However, RZI could improve the apparent quantum efficiency and maximum photosynthetic rate by 60.00% and 31.25%, respectively, reduce the light compensation point by 17.91%, and alleviate the photosynthetic lunch break phenomenon. Under FI, the physiological indexes of leaves increased with the increase in the LULI, while the Pn and SPAD values were the largest under RZI when the LULI was 60–90% of FC. The daily average Pn value of T2 in 2021 and 2022 ranged from 12.93 to 17.77 μmol·m−2·s−1. Compared with FI, RZI significantly improved the leaf water potential, Pn, and SPAD values by increasing the soil water content (SWC) of the 40–80 cm soil layer by 5.04–8.80%, which increased the yield by 6.86–18.67%. The results show that the yield and water use efficiency reached the peak when the LULI was 60–90% of FC under RZI, which could provide theoretical support for efficient irrigation of vineyards in extremely arid areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3