Novel Furrow Diking Equipment-Design Aimed at Increasing Water Consumption Efficiency in Vineyards

Author:

Oprescu Marius Remus1,Biris Sorin-Stefan2ORCID,Nenciu Florin1ORCID

Affiliation:

1. National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA Bucharest, 013811 Bucharest, Romania

2. Department of Biotechnical Systems, University Politehnica of Bucharest, 006042 Bucharest, Romania

Abstract

Productivity in viticultural practices is highly dependent on seasonal availability of rainfall and the efficiency of soil and water conservation strategies. Sustainable water consumption has been regarded as a business, social, and environmental responsibility, since resource availability becomes more challenging. The present research evaluates a new agricultural equipment design, employed in furrow compartmentalization works, with the aim of improving the efficiency of rainwater storage in the soil, reducing the runoff and the erosion on sloping soils. The newly developed equipment operates on the basis of a rigid memory and employs the cam-tappet mechanism, known for its high customization potential. The system functionality has been improved by integrating enhanced hoe shapes, adapted for the demanding working conditions encountered in vineyards. The evaluated performance indicators showed an increased up to 7% of the water storage effectiveness, while the micro-basins construction performance improved by 10%. The furrow diking phase is integrated into the weeding works, and recorded low additional fuel consumption of only 3–5%, being appreciated by farmers due to its constructive simplicity. As a result, the equipment has shown a significant application potential to increase deep water storage in vineyards and reduce the negative impacts of climate change on agriculture.

Funder

University Politehnica of Bucharest

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3