ZIF-67/SA@PVDF Ultrafiltration Membrane with Simultaneous Adsorption and Catalytic Oxidation for Dyes

Author:

Zhu Kaixuan1,Mohammed Shabin2ORCID,Tang Hai1,Xie Zongli3ORCID,Fang Sisheng1,Liu Shasha1

Affiliation:

1. School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China

2. NYUAD Water Research Center, Department of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates

3. CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia

Abstract

Due to their stable chemical properties and complex structures, dyes are difficult to be removed from water. Herein, a ZIF-67/SA@PVDF (ZSA3@PVDF) mixed matrix membrane has been fabricated by incorporating silicon aerogel (SA) and zeolitic imidazolate framework material 67 (ZIF-67) nanoparticles in a polyvinylidene fluoride (PVDF) membrane for the removal and degradation of dyes from water. The influence of SA and ZIF-67 on the morphology and structure of the membrane was confirmed using scanning electron microscope (SEM) and atomic force microscope (AFM). In ZSA3@PVDF membrane, both SA and ZIF-67 are highly porous nanomaterials that possess good adsorption capacity, as confirmed by the Brunauer–Emmett–Teller (BET) result. In addition, the cobalt (Co) element of ZIF-67 can catalyze peroxymonosulfate (PMS) to generate strong oxidizing sulfate radicals (SO42−), contributing to improving regeneration capacity of the ZIF-67/SA@PVDF membrane. The water flux of ZSA3@PVDF membrane is 427.6 L m−2 h−1 bar−1, and the Methylene blue (MB) removal rate is higher than 99% when filtrating 100 mL MB solution (5 mg/L). The regeneration test result shows that the removal rate of the ZSA3@PVDF membrane is still above 98% after five cycles of adsorption of MB. The self-cleaning experiment shows that the adsorption of SA in the ZSA3@PVDF membrane promotes the catalytic performance of the membrane, showing a better self-cleaning ability. The ZSA3@PVDF membrane provides a new strategy for the removal of dyes in the advanced purification of dye wastewater.

Funder

Natural Science Foundation of Anhui Province

Anhui Polytechnic University Startup Foundation for Introduced Talents, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3