Ceiling and Wall Illumination, Utilance, and Power in Interior Lighting

Author:

Pracki PiotrORCID,Dziedzicki Michał,Komorzycka Paulina

Abstract

The common use of electric lighting in interiors has led to the need to search for user- and environmentally-friendly solutions. In this research, the impact of the luminaires and room parameters on the selected parameters of general lighting in interiors was assessed. To achieve the objective of this work, a computer simulation and statistical analysis of results were conducted. The illuminance uniformity on work plane, ceiling and wall relative illuminances, utilance, and normalized power density of lighting installations for 432 situations were analyzed in detail. The scenarios were varied in terms of room size, reflectance, lighting class, luminaire downward luminous intensity distribution, and layout. The lighting class was a factor having the highest impact on ceiling and wall illumination, utilance, and power. It was also shown that the impact of lighting class on ceiling illumination, utilance and power, was different in interiors of various sizes. The impact of reflectances and luminaire layouts on the analyzed parameters was significantly lower. The results also demonstrated that the use of different lighting classes gave the possibility of reducing the power of general lighting in interiors at a level of 30% on average. Based on the results, a classification of energy efficiency in general lighting in interiors was also proposed. Understanding the correlations between the lighting system used and the effects achieved is helpful in obtaining comfortable and efficient lighting solutions in interiors.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3