Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption

Author:

Bu Seok-JunORCID,Cho Sung-BaeORCID

Abstract

Predicting residential energy consumption is tantamount to forecasting a multivariate time series. A specific window for several sensor signals can induce various features extracted to forecast the energy consumption by using a prediction model. However, it is still a challenging task because of irregular patterns inside including hidden correlations between power attributes. In order to extract the complicated irregular energy patterns and selectively learn the spatiotemporal features to reduce the translational variance between energy attributes, we propose a deep learning model based on the multi-headed attention with the convolutional recurrent neural network. It exploits the attention scores calculated with softmax and dot product operation in the network to model the transient and impulsive nature of energy demand. Experiments with the dataset of University of California, Irvine (UCI) household electric power consumption consisting of a total 2,075,259 time-series show that the proposed model reduces the prediction error by 31.01% compared to the state-of-the-art deep learning model. Especially, the multi-headed attention improves the prediction performance even more by up to 27.91% than the single-attention.

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3