Comparing Hydrogen Sulfide Removal Efficiency in a Field-Scale Digester Using Microaeration and Iron Filters

Author:

Huertas Joanna K.ORCID,Quipuzco Lawrence,Hassanein AmroORCID,Lansing StephanieORCID

Abstract

Biological desulfurization of biogas from a field-scale anaerobic digester in Peru was tested using air injection (microaeration) in separate duplicate vessels and chemical desulfurization using duplicate iron filters to compare hydrogen sulfide (H2S) reduction, feasibility, and cost. Microaeration was tested after biogas retention times of 2 and 4 h after a single injection of ambient air at 2 L/min. The microaeration vessels contained digester sludge to seed sulfur-oxidizing bacteria and facilitate H2S removal. The average H2S removal efficiency using iron filters was 32.91%, with a maximum of 70.21%. The average H2S removal efficiency by iron filters was significantly lower than microaeration after 2 and 4 h retention times (91.5% and 99.8%, respectively). The longer retention time (4 h) resulted in a higher average removal efficiency (99.8%) compared to 2 h (91.5%). The sulfur concentration in the microaeration treatment vessel was 493% higher after 50 days of treatments, indicating that the bacterial community present in the liquid phase of the vessels effectively sequestered the sulfur compounds from the biogas. The H2S removal cost for microaeration (2 h: $29/m3 H2S removed; and 4 h: $27/m3 H2S removed) was an order of magnitude lower than for the iron filter ($382/m3 H2S removed). In the small-scale anaerobic digestion system in Peru, microaeration was more efficient and cost effective for desulfurizing the biogas than the use of iron filters.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3