Abstract
Through analyzing the transient components and transient characteristics in transient zero-sequence current (TZSC), a novel fault feeder detection method based on the transient correlation of non-power frequency components (NPFCs) for the resonant grounded system is proposed. Firstly, using variational mode decomposition combined with fast Fourier transformation (VMD–FFT) to decompose the TZSC, by removing the power frequency components and noise signals, the transient NPFCs can be obtained. Secondly, to reflect the overall changing trend between faulty and healthy currents, the moving average filter is introduced to smooth the NPFCs; in this way, the fault transient features can be accurately revealed. Finally, the faulty feeder can be detected by comparing the threshold with the maximum difference value of comprehensive correlation coefficient of NPFCs. The detection results show that the proposed fault detection method can accurately select the faulty feeder; it is unaffected by fault resistances, fault phase angles, etc. Moreover, the detection method can resist noise interference.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献