Steady-State Performance Prediction for a Variable Speed Direct Expansion Air Conditioning System Using a White-Box Based Modeling Approach

Author:

Xia Yudong,Jiangzhou Shu,Zhang Xuejun,Zhang Zhao

Abstract

When using a certain type of Heating, Ventilation & Air Conditioning (HVAC) systems, it is primary to obtain their steady-state operating behaviors for achieving a better indoor thermal environment. This paper reports a development of a white-box-based dynamic model for a direct expansion (DX) air conditioning (A/C) system to predict its steady-state operating performance under variable speed operation. The established model consists of five sub-models, i.e., a compressor, an electronic expansion valve, an evaporator, a condenser and a conditioned space. Each sub-model was developed based on partial lumped parameter approach. Using the available data generated from an experimental DX A/C system, both transient and steady-state behaviors predictions agreed well with the experimental ones. With the help of the validated white-box model, the inherent steady-state operating performance expressed in terms of the relationship among total cooling capacity (TCC), equipment sensible heat ratio (E SHR) and coefficient of performance (COP) under various speed combinations of compressor and supply fan were further examined. The results show that a higher COP could be achieved when the DX A/C system was operated at a higher fan speed or a lower compressor speed for dealing with a larger required E SHR. This model could be helpful for A/C system design and controller development.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3