Author:
Xia Yudong,Jiangzhou Shu,Zhang Xuejun,Zhang Zhao
Abstract
When using a certain type of Heating, Ventilation & Air Conditioning (HVAC) systems, it is primary to obtain their steady-state operating behaviors for achieving a better indoor thermal environment. This paper reports a development of a white-box-based dynamic model for a direct expansion (DX) air conditioning (A/C) system to predict its steady-state operating performance under variable speed operation. The established model consists of five sub-models, i.e., a compressor, an electronic expansion valve, an evaporator, a condenser and a conditioned space. Each sub-model was developed based on partial lumped parameter approach. Using the available data generated from an experimental DX A/C system, both transient and steady-state behaviors predictions agreed well with the experimental ones. With the help of the validated white-box model, the inherent steady-state operating performance expressed in terms of the relationship among total cooling capacity (TCC), equipment sensible heat ratio (E SHR) and coefficient of performance (COP) under various speed combinations of compressor and supply fan were further examined. The results show that a higher COP could be achieved when the DX A/C system was operated at a higher fan speed or a lower compressor speed for dealing with a larger required E SHR. This model could be helpful for A/C system design and controller development.
Funder
Natural Science Foundation of Zhejiang Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献