Characteristics of δD and δ18O of Reclaimed Mine Soil Water Profile and Its Source Water Bodies in a Coal Mining Subsidence Area with High Groundwater Level—A Case Study from the Longdong Coal Mining Subsidence Area in Jiangsu Province, China

Author:

Ge Mengyu,Chen Baozhang

Abstract

Coal mining, as one of the key drivers of land degradation worldwide, caused land subsidence problems. In this study, we conducted experimental research to explore the reclaimed mine soil (RMS) water dynamics and its sources in relation to reclaimed land use types using stable water isotopes in the Longdong coal mining area with high groundwater level in east China. We collected water samples seven times in 2017 from all of these water bodies (precipitation, surface waters (river water and water from subsidence pits (WSP)), groundwater and soil water). Our main findings are three fold: (1) the values of slope and intercept of the local meteoric water line of Craig (LMWL) of precipitation for the study area are higher than the global meteoric water line of Craig (GMWL) because of the humid monsoon climate zoon, and the values of δD and δ18O of surface waters and soil water and groundwater deviated from LMWL to some extent with a range of 5–30%, and the D and 18O of precipitation and the surface waters have higher seasonal variation than groundwater; (2) the values of δD and δ18O of RMS for the whole soil profile (0–100 cm) are lower than that of precipitation and have obvious seasonal variations and great fluctuation in the topsoil (0–30/40 cm) and decrease at depth (30/40–70 cm) and stable in deep soil layers (below 70 cm deep); (3) the RMS with forest and crop enhanced water infiltration capacity and soil water mixing strength compared with the waste RMS, so establishment of forest and crops should be encouraged in the RMS; (4) the main sources of topsoil (0–30 cm for crop and 0–40 cm for forest) of RMS are precipitation through infiltration, the main supply for deep soil water (below 70 cm deep) is groundwater, and the soil water for the middle deep soil layers (30/40–70 cm) is mainly from mixing sources of precipitation, groundwater, and river water through pant root water absorbing and groundwater upshifting.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference111 articles.

1. The Impact of Underground Longwall Mining on Prime Agricultural Land: A Review and Research Agenda

2. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel

3. Isotopic patterns in modern global precipitation;Rozanski;Clim. Chang. Cont. Isot. Rec.,1993

4. Principle and method of soil profile reconstruction for coal mine land reclamation;Zhenqi;J. China Coal Soc.,1997

5. Soil moisture variation in high groundwater level coal mining subsidence in Dongtan Coal Mine;Mai;China Coal,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3