DPMF: Decentralized Probabilistic Matrix Factorization for Privacy-Preserving Recommendation

Author:

Yang XuORCID,Luo Yuchuan,Fu Shaojing,Xu Ming,Chen Yingwen

Abstract

Collaborative filtering is a popular approach for building an efficient and scalable recommender system. However, it has not unleashed its full potential due to the following problems. (1) Serious privacy concerns: collaborative filtering relies on aggregated user data to make personalized predictions, which means that the centralized server can access and compromise user privacy. (2) Expensive resources required: conventional collaborative filtering techniques require a server with powerful computing capacity and large storage space, so that the server can train and maintain the model. (3) Considering only one form of user feedback: most existing works aim to model user preferences based on explicit feedback (e.g., ratings) or implicit feedback (e.g., purchase history, viewing history) due to their heterogeneous representation; however, these two forms of feedback are abundant in most collaborative filtering applications, can both affect the model, and very few works studied the simultaneous use thereof. To solve the above problems, in this study we focus on implementing decentralized probabilistic matrix factorization for privacy-preserving recommendations. First, we explore the existing collaborative filtering algorithms and propose a probabilistic matrix co-factorization model. By integrating explicit and implicit feedback into a shared probabilistic model, the model can cope with the heterogeneity between these two forms of feedback. Further, we devise a decentralized learning method that allows users to keep their private data on the end devices. A novel decomposing strategy is proposed for users to exchange only non-private information, in which stochastic gradient descent is used for updating the models. Complexity analysis proves that our method is highly efficient with linear computation and communication complexity. Experiments conducted on two real-world datasets FilmTrust and Epinions show that our model gains a guarantee of convergence as the RMSE decreases quickly within 100 rounds of iterations. Compared with the state-of-the-art models, our model achieves lower model loss in rating prediction task and higher precision in item recommendation task.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Hunan Province

NUDT Grants

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3