Motion Characteristics of Collapse Body during the Process of Expanding a Rescue Channel

Author:

Fu Yanlong,Xie KaiORCID,Xiao FukunORCID,Liu Gang,Hou ZhiyuanORCID,Zhang Rui

Abstract

For the rapid construction of a rescue channel in the process of underground emergency rescue, a method for the expanded rescue channel in the collapse body is proposed and verified by a model test and a numerical simulation experiment. The motion characteristics and motion law of the expanded collapse body are analyzed on the basis of the mechanics of granular media, and a comparative simulation study on the main influencing factors of the collapse body motion is carried out. The results show that: (1) When the collapse body is expanded for a rescue channel, it will form three types of six relative slip planes. According to the position of the slip plane and the distribution of displacement, the collapse body can be divided into a direct displacement region, a stable region, and an indirect displacement region. (2) The expansion process can be divided into the initial start-up stage, the uplift stage, and the collapse stage, according to the formation time of the slip plane and the displacement law of the collapse body. (3) The results of the numerical simulation and the theoretical analysis of the granular media show that the dip angle of the slip plane is determined by the internal friction angle of the collapse particles, and the dip angles of the three slip planes are below θ1=90°−φ, θ2=45°+φ/2, and θ3=90°+φ/2. (4) The transverse scope and longitudinal distance is brought by the expansion increase with the increase in the expansion size, and the simulated dip angles of the slip plane are larger than the theoretical values due to the size effect. (5) In the expansion process, the strong force chain in the collapse body is concentrated in the stress arch above the expander device, and the failure and reconstruction laws of the stress arch at each stage are consistent with the formation of the slip plane and the uplift and instability law of the collapse body.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. The guest editor of the album “Mine Geological Guarantee under the background of Accurate coal Mining” addressed the readers;Yuan;J. China Coal Soc.,2019

2. Application of emergency room in mine accident rescue;Xiang;Labour Prot.,2006

3. Study on Coal Mine Emergency Refuge System Construction in Developed Coal-Producing Countries;Gao;J. Anhui Univ. Sci. Technol. Nat. Sci.,2011

4. Study of collapse shape about mining gateway under condition of developed joints and fractures roof;Hao;J. Heilongjiang Inst. Sci. Technol.,2013

5. Underground geological fault fracture zone of roadway collapse mechanical properties fall;Hao;J. Heilongjiang Inst. Sci. Technol.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3