On Ghost Imaging Studies for Information Optical Imaging

Author:

Hu ChenyuORCID,Han ShenshengORCID

Abstract

Since the birth of information theory, to understand, study, and optimize optical imaging systems from the information–theoretic viewpoint has been an important research subfield of optical imaging, accompanied by a series of corresponding advances. However, since the “direct point-to-point” image information acquisition mode of traditional optical imaging systems, which directly performs one-to-one signal mapping from the object to the detection plane, lacks a “coding–decoding” operation on the image information, related studies based on information theory are more meaningful in the theoretical sense, while almost acting as icing on the cake for the optimization and design of practical systems and contributing little to substantive breakthroughs in further imaging capabilities. With breakthroughs in modern light-field modulation techniques as well as ghost imaging techniques, which establish point-to-point image signal reproduction based on high-order correlation of light fields, currently, it is able to encode the image information with controllable spatiotemporal light-field fluctuations during the ghost imaging process. Combined with modern digital photoelectric detection technologies, ghost imaging systems behave more in line with the modulation–demodulation information transmission mode compared to traditional optical imaging. This puts forward imperative demands and challenges for understanding and optimizing ghost imaging systems from the viewpoint of information theory, as well as bringing more development opportunities for the research field of information optical imaging. This article will briefly review the development of information optical imaging since the birth of information theory, overview its current research status by combining with latest related progresses in ghost imaging, and discuss the potential developing tendency of this research topic.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3