Effect of Heat Treatment on Some Titanium Alloys Used as Biomaterials

Author:

Baltatu Madalina SimonaORCID,Chiriac-Moruzzi CristianaORCID,Vizureanu PetricaORCID,Tóth LászlóORCID,Novák János

Abstract

Titanium-based alloys are constantly improved to obtain properties suitable for their use. Improving titanium alloys is very important for performing alloys without side effects. In this paper effects of structure, microhardness, and indentation test of eight titanium alloys were investigated after aging. The heat treatment consisted of a high-temperature quenching accomplished in three steps (650 °C for 25 min, 850 °C for 20 min, and 950 °C for 20 min). The cooling process was accomplished using N2 gas, introduced in the chamber at a 9-bar pressure for 37 min. Then, followed by heating to a constant temperature tempering (550 °C) at 1.5 bar pressure and kept for 2 h and 10 min at 2 bar pressure. Optical microscopy images were obtained of Ti-Mo-Zr-Ta alloys with grain-specific aspects of titanium alloys; acicular and coarse structures are specific to β alloys. Microhardness results showed significantly influenced by the heat treatment, increased by approximately 5% for Ti15Mo7Zr15Ta1Si and Ti20Mo7Zr15Ta0.5Si, while for Ti15Mo7Zr15Ta0.5Si and Ti20Mo7Zr15Ta an approximately 9% decrease has been noted. The modulus of elasticity results obtained by the indentation method for the experimental alloys were between 36.25–66.24 GPa. The heat treatments applied to the alloys had a pronounced effect, improving both the structure of the alloys and the results of the indentation test.

Funder

TUIASI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. (2022, April 13). Encyclopaedia Britannica. Available online: https://www.britannica.com/science/titanium.

2. Metallic implant biomaterials;Mater. Sci. Eng. R,2015

3. Vizureanu, P., and Bălțatu, M.S. (2020). Titanium-Based Alloys for Biomedical Applications, Materials Research Forum LLC.

4. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications;J. Electroanal. Chem.,1999

5. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications;Mater. Sci. Eng. C,2019

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3