Technical Energy Assessment and Sizing of a Second Life Battery Energy Storage System for a Residential Building Equipped with EV Charging Station

Author:

Salek Farhad,Resalati Shahaboddin,Morrey Denise,Henshall Paul,Azizi AydinORCID

Abstract

This study investigates the design and sizing of the second life battery energy storage system applied to a residential building with an EV charging station. Lithium-ion batteries have an approximate remaining capacity of 75–80% when disposed from Electric Vehicles (EV). Given the increasing demand of EVs, aligned with global net zero targets, and their associated environmental impacts, the service life of these batteries, could be prolonged with their adoption in less demanding second life applications. In this study, a technical assessment of an electric storage system based on second life batteries from electric vehicles (EVs) is conducted for a residential building in the UK, including an EV charging station. The technical and energy performance of the system is evaluated, considering different scenarios and assuming that the EV charging load demand is added to the off-grid photovoltaic (PV) system equipped with energy storage. Furthermore, the Nissan Leaf second life batteries are used as the energy storage system in this study. The proposed off-grid solar driven energy system is modelled and simulated using MATLAB Simulink. The system is simulated on a mid-winter day with minimum solar irradiance and maximum energy demand, as the worst case scenario. A switch for the PV system has been introduced to control the overcharging of the second life battery pack. The results demonstrate that adding the EV charging load to the off-grid system increased the instability of the system. This, however, could be rectified by connecting additional battery packs (with a capacity of 5.850 kWh for each pack) to the system, assuming that increasing the PV installation area is not possible due to physical limitations on site.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3