An Ontological Knowledge Base of Poisoning Attacks on Deep Neural Networks

Author:

Altoub MajedORCID,AlQurashi FahadORCID,Yigitcanlar TanORCID,Corchado Juan M.ORCID,Mehmood RashidORCID

Abstract

Deep neural networks (DNNs) have successfully delivered cutting-edge performance in several fields. With the broader deployment of DNN models on critical applications, the security of DNNs has become an active and yet nascent area. Attacks against DNNs can have catastrophic results, according to recent studies. Poisoning attacks, including backdoor attacks and Trojan attacks, are one of the growing threats against DNNs. Having a wide-angle view of these evolving threats is essential to better understand the security issues. In this regard, creating a semantic model and a knowledge graph for poisoning attacks can reveal the relationships between attacks across intricate data to enhance the security knowledge landscape. In this paper, we propose a DNN poisoning attack ontology (DNNPAO) that would enhance knowledge sharing and enable further advancements in the field. To do so, we have performed a systematic review of the relevant literature to identify the current state. We collected 28,469 papers from the IEEE, ScienceDirect, Web of Science, and Scopus databases, and from these papers, 712 research papers were screened in a rigorous process, and 55 poisoning attacks in DNNs were identified and classified. We extracted a taxonomy of the poisoning attacks as a scheme to develop DNNPAO. Subsequently, we used DNNPAO as a framework by which to create a knowledge base. Our findings open new lines of research within the field of AI security.

Funder

Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3