Abstract
Many developers of biometric systems start with modest samples before general deployment. However, they are interested in how their systems will work with much larger samples. To assist them, we evaluated the effect of gallery size on biometric performance. Identification rates describe the performance of biometric identification, whereas ROC-based measures describe the performance of biometric authentication (verification). Therefore, we examined how increases in gallery size affected identification rates (i.e., Rank-1 Identification Rate, or Rank-1 IR) and ROC-based measures such as equal error rate (EER). We studied these phenomena with synthetic data as well as real data from a face recognition study. It is well known that the Rank-1 IR declines with increasing gallery size, and that the relationship is linear against log(gallery size). We have confirmed this with synthetic and real data. We have shown that this decline can be counteracted with the inclusion of additional information (features) for larger gallery sizes. We have also described the curves which can be used to predict how much additional information would be required to stabilize the Rank-1 IR as a function of gallery size. These equations are also linear in log(gallery size). We have also shown that the entire ROC-curve was not systematically affected by gallery size, and so ROC-based scalar performance metrics such as EER are also stable across gallery size. Unsurprisingly, as additional uncorrelated features are added to the model, EER decreases. We were interested in determining the impact of adding more features on the median, spread and shape of similarity score distributions. We present evidence that these decreases in EER are driven primarily by decreases in the spread of the impostor similarity score distribution.
Funder
National Science Foundation
National Institute of Standards and Technology
Center for Statistics and Applications in Forensic Evidence
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference10 articles.
1. Wilson, C., Watson, C., Garris, M., and Hicklin, R. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50783. Studies of Fingerprint Matching Using the NIST Verification Test Bed (VTB), 2022.
2. Asymptotic Biometric Analysis for Large Gallery Sizes;Baveja;IEEE Trans. Inf. Forensics Secur.,2010
3. Grother, P.P., and Phillips, P.J. Models of large population recognition performance. Proceedings of the 2004 IEEE Computer Society Conference Computer Vision and Pattern Recognition (CVPR’04).
4. Validating a Biometric Authentication System: Sample Size Requirements;Dass;IEEE Trans. Pattern Anal. Mach. Intell.,2006
5. Schuckers, M.E. Computational Methods in Biometric Authentication, 2010.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献