A New Multi-Objective Optimization Design Method for Directional Well Trajectory Based on Multi-Factor Constraints

Author:

Qin Jianyu,Liu Luo,Xue Liang,Chen Xuyue,Weng Chengkai

Abstract

The design of the wellbore trajectory directly affects the construction quality and efficiency of drilling. A good wellbore trajectory is conducive to guiding on-site construction, which can effectively reduce costs and increase productivity. Therefore, further optimization of the wellbore trajectory is inevitable and necessary. Based on this, aiming at the three-segment, five-segment, double-increase-profile extended reach wells, this paper considered the constraints of formation wellbore stability; formation strength; and the determination of the deviation angle, deviation point position, and target range by the work of deflecting tools. In addition, the optimization objective function of the shortest total length of the wellbore, minimum error of the second target, lowest cost, minimum friction of the lifting and lowering string, and minimum torque of rotary drilling were proposed and established. The objective function of the longest extension limit of the horizontal section of the extended reach well is established. Taking the 14-8 block of the Lufeng Oilfield in the eastern South China Sea as an example, the actual data of the field were modeled, and the independence of the objective function was verified by comparing the number of non-inferior solutions of the two objective functions. By normalizing simplified to double-, three-, and four-objective functions, using a genetic algorithm and particle swarm optimization results, it can be found that the new method of optimization design established in this paper has an obvious optimization effect compared with the original design.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3