Numerical Investigation of Thermal Efficiency of a Solar Cell

Author:

Ansari Emaad,Akhtar Mohammad Nishat,Othman Wan Amir Fuad Wajdi,Abu Bakar Elmi,Alhady S. S. N.

Abstract

Solar air and water heaters are beneficial in many countries across the globe where solar radiation is massive in the daytime. As the surface temperature of the photovoltaic cell increases, the efficiency of the cell scales down. We carried out the cooling of solar panels in order to maximize their efficiency. In the present work, we examined the dependence of the inlet boundary condition on the area average temperature at the outlet of the tube. The tube comprises a square cross-section and carries three folds in order to maximize the area in contact with a solar panel. We investigated the dependency of thermal efficiency of solar panels on inlet boundary conditions and observed that with the increase in Reynolds number, i.e., velocity at the inlet, the thermal efficiency initially increases up to Re = 700 and then remains constant at 94%. We also found that when 40% of the heat input was carried away by cooling water, 20% electrical efficiency was achieved.

Funder

Research Creativity and Management Office, University Sains Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3