Unified Evolutionary Algorithm Framework for Hybrid Power Converter

Author:

Ghorbanpour Samira,Seo Mingyu,Park Jeong-Ju,Kim Musu,Jin YuweiORCID,Han Sekyung

Abstract

A significant amount of the literature is focused on converters that supply the required voltage with low input-current ripple to electronic devices. A hybrid converter that combines boost and Cuk converters was developed recently. This hybrid converter achieved a relatively low input-current ripple based on earlier strategies. This paper proposes a new model that simulates a hybrid power converter system using a unified evolutionary algorithm (EA). As part of this paper, we present an improved framework for a hybrid power converter. Moreover, a unified EA is developed to incorporate differential evolution (DE) and genetic algorithm (GA) properties in order to analyze the proposed modified hybrid power converter. This research describes a modified hybrid power converter that optimizes the zero-ripple duty cycle (DZ) through the proposed algorithm for minimizing the input-current ripple. Based on our simulation results, comparing the proposed method with the baseline algorithm reveals that the proposed approach is significantly more efficient than the baseline algorithm and achieves the minimum input-current ripple in different gain values. In addition, we observe that the proposed algorithm performs better than the DE and GA algorithms in terms of obtaining low input-current ripple results. Therefore, the proposed hybrid algorithm is becoming more efficient with hybridization.

Funder

Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3