Wideband Circularly Polarized Filtering Hybrid Antenna

Author:

Qian YahuiORCID,Xie Shumin

Abstract

In this paper, a wideband circularly polarized (CP) filtering hybrid antenna is presented. The liquid dielectric resonator (DR) is excited by a microstrip-coupled cross-slot to generate CP radiation. Four inverted L-shaped strips are loaded on the ground plane to introduce an additional CP resonant point, then two adjacent axial ratio (AR) minima are combined to improve the bandwidth of the single-feed CP antenna. By etching a U-shaped slot and loading a C-shaped microstrip stub on the microstrip line, two tunable radiation nulls near the edges of the working band can be obtained without any extra filtering circuits. To verify the design, a filtering CP antenna is designed, fabricated, and tested. Measured results show that the antenna provides wider 3-dB AR and an impedance bandwidth of 38.8% from 1.36 to 2.02 GHz and 39.4% from 1.37 to 2.04 GHz, respectively. The realized gain of the proposed antenna is stable at about 7.8 dBi within the whole working band. A reasonable agreement between measured and simulated results is observed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. Gao, S., Luo, Q., and Zhu, F. Circularly Polarized Antennas, 2014.

2. Luk, K.M., and Leung, K.W. Dielectric Resonator Antennas, 2003.

3. Petosa, A. Dielectric Resonator Antenna Handbook, 2007.

4. A novel low-profile dual circularly polarized dielectric resonator antenna;Lu;IEEE Trans. Antennas Propag.,2016

5. Design of a wideband circularly polarized stacked dielectric resonator antenna;Sun;IEEE Trans. Antennas Propag.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3