Discontinuity Recognition and Information Extraction of High and Steep Cliff Rock Mass Based on Multi-Source Data Fusion

Author:

Kong Xiali,Xia Yonghua,Wu Xuequn,Wang Zhihe,Yang Kaihua,Yan Min,Li ChenORCID,Tai Haoyu

Abstract

It is fundamental to acquire accurate point cloud information on rock discontinuities efficiently and comprehensively when evaluating the stability of rock masses. Taking a high and steep cliff as an example, we combined 3D laser scanning and UAV photogrammetry technology to collect rock data, and proposed an intelligent identification method for rock discontinuities based on the multi-source fusion of point clouds. First, the 3D-laser-collected point cloud data were used as the basis to fuse with the UAV-photogrammetry-collected data, and the unified coordinate system and improved ICP algorithm were used to obtain the complete 3D point cloud in the study area. Secondly, we used neighborhood information entropy to achieve adaptive neighborhood-scale selection and to obtain the optimal neighborhood radius for the KNN search, to effectively calculate the point cloud normal vector and rock mass orientation information. Finally, the KDE algorithm and DBSCAN algorithm were combined for rock discontinuity clustering to achieve intelligent identification and information extraction of the rock structural plane. The clustering results were imported into the DSE program developed based on Matlab to calculate the discontinuity spacing and continuity of the rock mass structure, and to efficiently obtain the parameters of rock mass occurrence. The research results showed that this method can effectively solve the problem of incomplete-data-acquisition ground 3D laser scanning in complex geological conditions, and UAV photogrammetry prone to blurred images in depressed areas. When the extraction results were compared with the field-measured rock occurrence, the average dip angle error was about 2°, the average dip direction error was 1°, and the recognition results met the accuracy requirements. The research results provide a feasible scheme for the identification and extraction of discontinuities of high and steep rock masses.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Ning, H. Identification and Information Extraction of Rock Discontinuity Surface Based on 3D Laser Scanning. Master’s Thesis, 2020.

2. Application of UAV photogrammetry in geological investigation of high and steep slopes;Jia;Geotechnics,2018

3. Application of Unmanned Aerial Vehicle Oblique Photogrammetry to Investigation of High Slope Rock Structure;Ye;Geomat. Inf. Sci. Wuhan Univ.,2020

4. Research on key information extraction technology of deformation and damage characteristics of rock masses in Jinping underground laboratory based on 3D laser scanning;Xu;Geotech. Mech.,2017

5. Feng, M. Research on 3D Modeling and Rock Joint Information Extraction of High Steep Cliffs. Master’s Thesis, 2020.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3