Unified Analytic Melt-Shear Model in the Limit of Quantum Melting

Author:

Burakovsky LeonidORCID,Preston Dean L.ORCID

Abstract

Quantum melting is the phenomenon of cold (zero-temperature) melting of a pressure-ionized substance which represents a lattice of bare ions immersed in the background of free electrons, i.e., the so-called one-component plasma (OCP). It occurs when the compression of the substance corresponds to the zero-point fluctuations of its ions being so large that the ionic ordered state can no longer exist. Quantum melting corresponds to the classical melting curve reaching a turnaround point beyond which it starts going down and eventually terminates, when zero temperature is reached, at some critical density. This phenomenon, as well as the opposite phenomenon of quantum crystallization, may occur in dense stellar objects such as white dwarfs, and may play an important role in their evolution that requires a reliable thermoelasticity model for proper physical description. Here we suggest a modification of our unified analytic melt-shear thermoelasticity model in the region of quantum melting, and derive the corresponding Grüneisen parameters. We demonstrate how the new functional form for the cold shear modulus can be combined with a known equation of state. One of the constituents of the new model is the melting curve of OCP crystal which we also present. The inclusion of quantum melting implies that the modified model becomes applicable in the entire density range of the existence of the solid state, up to the critical density of quantum melting above which the solid state does not exist. Our approach can be generalized to model melting curves and cold shear moduli of different solid phases of a multi-phase material over the corresponding ranges of mechanical stability.

Funder

auspices of the US DOE/NNSA

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3