Ambulatory Monitoring of Subglottal Pressure Estimated from Neck-Surface Vibration in Individuals with and without Voice Disorders

Author:

Cortés Juan P.ORCID,Lin Jon Z.,Marks Katherine L.,Espinoza Víctor M.ORCID,Ibarra Emiro J.ORCID,Zañartu MatíasORCID,Hillman Robert E.,Mehta Daryush D.

Abstract

The aerodynamic voice assessment of subglottal air pressure can discriminate between speakers with typical voices from patients with voice disorders, with further evidence validating subglottal pressure as a clinical outcome measure. Although estimating subglottal pressure during phonation is an important component of a standard voice assessment, current methods for estimating subglottal pressure rely on non-natural speech tasks in a clinical or laboratory setting. This study reports on the validation of a method for subglottal pressure estimation in individuals with and without voice disorders that can be translated to connected speech to enable the monitoring of vocal function and behavior in real-world settings. During a laboratory calibration session, a participant-specific multiple regression model was derived to estimate subglottal pressure from a neck-surface vibration signal that can be recorded during natural speech production. The model was derived for vocally typical individuals and patients diagnosed with phonotraumatic vocal fold lesions, primary muscle tension dysphonia, and unilateral vocal fold paralysis. Estimates of subglottal pressure using the developed method exhibited significantly lower error than alternative methods in the literature, with average errors ranging from 1.13 to 2.08 cm H2O for the participant groups. The model was then applied during activities of daily living, thus yielding ambulatory estimates of subglottal pressure for the first time in these populations. Results point to the feasibility and potential of real-time monitoring of subglottal pressure during an individual’s daily life for the prevention, assessment, and treatment of voice disorders.

Funder

National Institutes of Health

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3