Wave Aberration Correction for an Unobscured Off-Axis Three-Mirror Astronomical Telescope Using an Aberration Field Compensation Mechanism

Author:

Wang Jinxin,He Xu,Zhang Xiaohui,Ma Mingze,Cao Zhirui

Abstract

Studying how to use the coupling characteristics of net aberration fields induced by different perturbation parameters to realize the wave aberration compensation correction of perturbed telescopes is of great significance for the development of active optics. Based on nodal aberration theory, this paper studies the wave aberration compensation correction method of an unobscured off-axis three-mirror telescope. Specifically, first of all, it theoretically analyzes the coupling effects and compensation relationships of net aberration fields induced by different perturbation parameters of the telescope. Furthermore, it establishes wave aberration correction models with the secondary mirror as the compensator and the third mirror as the compensator for the telescope, respectively. In the end, it verifies the two compensation correction models by simulations. The results show that the tolerance of the secondary mirror compensation correction mode (SMCM) to the perturbation parameter threshold is significantly better than that of the third mirror compensation correction model (TMCM). When the introduced perturbation parameter threshold is small, the correction accuracy of the two models for the wave aberrations is equivalent, and both reach the order of 10−3λ (RMS, λ = 632.8 nm). When the perturbation parameter threshold is increased, the correction accuracy of SMCM can still be maintained at the order of 10−3λ but the correction accuracy of TMCM would decrease by an order of magnitude.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3