Research and Application of Combined Reactive Power Compensation Device Based on SVG+SC in Wind Power Gathering Area

Author:

Peng YinzhangORCID,Wang Haiyun,Zhao Qi,Nan Dongliang,Li Wenxin

Abstract

With the increasing proportion of wind power access year by year, it brings many challenges to the voltage stability of power systems. In order to maintain the stability of the voltage in the power grid, it is impossible to take into account the regulation ability and economy when a single reactive power compensation device is installed. In this paper, a combined reactive power compensation device was installed, which is composed of a static var generator (SVG) and a parallel capacitor bank. The SVG has the characteristics of fast and smooth adjustment, and the application of the capacitor bank reduces the overall investment cost and has a great economy. The modal analysis method was used to find the optimal installation position for the reactive power compensation device. The improved particle swarm algorithm was used to optimize the capacity of the optimal reactive power compensation device to ensure the best performance of the compensation device. Finally, by formulating the control strategy of the combined reactive power compensation system, the reliable switching of the compensation device is controlled. The PSCAD simulation software was used to model the power grid in the Hami area, and six different configuration programs were set for static voltage stability simulation verification and three different configurations. The program was simulated and verified for transient voltage stability, and comparative analysis showed that the proposed method was correct, which strongly supports the voltage stability of the region and meets the demand of reactive power compensation of the power grid. This provides a good reference program for other wind power gathering areas.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3