A Deep Learning Approach for Credit Scoring Using Feature Embedded Transformer

Author:

Wang Chongren,Xiao Zhuoyi

Abstract

In this paper, we introduce a transformer into the field of credit scoring based on user online behavioral data and develop an end-to-end feature embedded transformer (FE-Transformer) credit scoring approach. The FE-Transformer neural network is composed of two parts: a wide part and a deep part. The deep part uses the transformer deep neural network. The output of the deep neural network and the feature data of the wide part are concentrated in a fusion layer. The experimental results show that the FE-Transformer deep learning model proposed in this paper outperforms the LR, XGBoost, LSTM, and AM-LSTM comparison methods in terms of area under the receiver operating characteristic curve (AUC) and the Kolmogorov–Smirnov (KS). This shows that the FE-Transformer deep learning model proposed in this paper can accurately predict user default risk.

Funder

Key R&D Plan funded by the Science and Technology Department of Shandong Province, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3