Marine Bacteria Associated with Colonization and Alteration of Plastic Polymers

Author:

Carrasco-Acosta Marina,Santos-Garcia MartaORCID,Garcia-Jimenez PilarORCID

Abstract

The aim of this work was molecular identification of bacteria associated with marine sand at the drift line, where most plastic debris is deposited, and evaluation of the alteration of plastic polymers by them. Bacterial communities growing on plastic polymer surfaces may differentially cause surface alteration through exopolysaccharide production. This alteration can be analyzed by changes in spectra regions of colonized polymers compared to uncolonized polymers using Fourier Transform Infrared Spectroscopy (FTIR). In this study, bacteria located in sand at the drift line above sea water, where microplastics are most abundant, were isolated and identified through 16S rRNA. Six of the identified species produced exopolysaccharides, namely Bacillus thuringiensis, B. cereus, Bacillus sp. Proteus penneri, Alcaligenes faecalis and Myroides gitamensis. These bacteria species were inoculated into plates, each containing two frequently reported types of polymers at the drift line. Specifically, the two types of plastic polymers used were polypropylene and polystyrene spheres in whole and mechanically crushed states. Differences in bacterial growth were reported as inferred from weight increase of polypropylene and polystyrene spheres after 1-year long culture. Results also showed that Alcaligenes faecalis, Bacillus cereus and Proteus penneri colonized polypropylene spheres and modified spectra regions of FTIR. It is concluded that bacteria located in sand can be considered plastic-altering bacteria as changes in FTIR-spectra of polymers can be related to bioalteration.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3