Abstract
Sliding mode control and disturbance compensation techniques are applied to a nonlinear speed control algorithm for a permanent magnet synchronous motor (PMSM). Optimizing the speed control performance of PMSM systems with various disturbances and uncertainties is challenging. To achieve a satisfactory performance, a sliding mode control method based on the super-twisting algorithm reaching law (STRL) is presented. STRL can adapt dynamically to the variations of a controlled system. The STRL maintains a high tracking performance of the controller and allows the control input to eliminate chattering. To estimate the uncertainties and compensate for disturbances, a support vector regression-disturbance observer (SVR-DOB) is presented. The estimated uncertainties were used to minimize modeling errors and improve the disturbance rejection. A controller using SVR-DOB achieves a high precision, and the simulation results demonstrated the validity of the proposed control approach.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献