Machine Learning-Assisted Prediction of Oil Production and CO2 Storage Effect in CO2-Water-Alternating-Gas Injection (CO2-WAG)

Author:

Li Hangyu,Gong Changping,Liu ShuyangORCID,Xu JianchunORCID,Imani Gloire

Abstract

In recent years, CO2 flooding has emerged as an efficient method for improving oil recovery. It also has the advantage of storing CO2 underground. As one of the promising types of CO2 enhanced oil recovery (CO2-EOR), CO2 water-alternating-gas injection (CO2-WAG) can suppress CO2 fingering and early breakthrough problems that occur during oil recovery by CO2 flooding. However, the evaluation of CO2-WAG is strongly dependent on the injection parameters, which in turn renders numerical simulations computationally expensive. So, in this work, machine learning is used to help predict how well CO2-WAG will work when different injection parameters are used. A total of 216 models were built by using CMG numerical simulation software to represent CO2-WAG development scenarios of various injection parameters where 70% of them were used as training sets and 30% as testing sets. A random forest regression algorithm was used to predict CO2-WAG performance in terms of oil production, CO2 storage amount, and CO2 storage efficiency. The CO2-WAG period, CO2 injection rate, and water–gas ratio were chosen as the three main characteristics of injection parameters. The prediction results showed that the predicted value of the test set was very close to the true value. The average absolute prediction deviations of cumulative oil production, CO2 storage amount, and CO2 storage efficiency were 1.10%, 3.04%, and 2.24%, respectively. Furthermore, it only takes about 10 s to predict the results of all 216 scenarios by using machine learning methods, while the CMG simulation method spends about 108 min. It demonstrated that the proposed machine-learning method can rapidly predict CO2-WAG performance with high accuracy and high computational efficiency under conditions of various injection parameters. This work gives more insights into the optimization of the injection parameters for CO2-EOR.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Problem analysis on low permeability reservoir water flooding;Gao;Inn. Mong. Petrochem. Ind.,2009

2. Present situation and development trend of CO2 injection enhanced oil recovery technology;Li;Oil Gas Reserv. Eval. Dev.,2019

3. Prospects and key scientific issues of CO2 near-miscible flooding;Chen;Pet. Sci. Bull.,2020

4. CO2 storage with enhanced gas recovery (CSEGR): A review of experimental and numerical studies

5. Laboratory study of CO2 channeling characteristics in ultra-low-permeability oil reservoirs;Wei;Pet. Sci. Bull.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3