Vickers Hardness Value Test via Multi-Task Learning Convolutional Neural Networks and Image Augmentation

Author:

Cheng Wan-Shu,Chen Guan-Ying,Shih Xin-Yen,Elsisi MahmoudORCID,Tsai Meng-HsiuORCID,Dai Hong-JieORCID

Abstract

Hardness testing is an essential test in the metal manufacturing industry, and Vickers hardness is one of the most widely used hardness measurements today. The computer-assisted Vickers hardness test requires manually generating indentations for measurement, but the process is tedious and the measured results may depend on the operator’s experience. In light of this, this paper proposes a data-driven approach based on convolutional neural networks to measure the Vickers hardness value directly from the image of the specimen to get rid of the aforementioned limitations. Multi-task learning is introduced in the proposed network to improve the accuracy of Vickers hardness measurement. The metal material used in this paper is medium-carbon chromium-molybdenum alloy steel (SCM 440), which is commonly utilized in automotive industries because of its corrosion resistance, high temperature, and tensile strength. However, the limited samples of SCM 440 and the tedious manual measurement procedure represent the main challenge to collect sufficient data for training and evaluation of the proposed methods. In this regard, this study introduces a new image mixing method to augment the dataset. The experimental results show that the mean absolute error between the Vickers hardness value output by the proposed network architecture can be 10.2 and the value can be further improved to 7.6 if the multi-task learning method is applied. Furthermore, the robustness of the proposed method is confirmed by evaluating the developed models with an additional 59 unseen images provided by specialists for testing, and the experimental results provide evidence to support the reliability and usability of the proposed methods.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3