Optimized Routing by Combining Grey Wolf and Dragonfly Optimization for Energy Efficiency in Wireless Sensor Networks

Author:

Younus Hiba Apdalani,Koçak CemalORCID

Abstract

The rapid development of technology has resulted in numerous sensors and devices for performing measurements in an environment. Depending on the scale and application, the coverage and size of a wireless sensor network (WSN) is decided. During the implementation, the energy consumption and life of the nodes in the WSN are affected by the continuous usage. Hence, in this study, we aimed to improve the lifespan of the WSN and reduce energy consumption by the nodes during the data transfer using a hybrid approach. The hybrid approach combines Grey Wolf Optimization (GWO) and Dragonfly Optimization (DFO) for exploring a global solution and optimizing the local solution to find the optimum route for the data transfer between the target node and the control center. The results show that the proposed approach has effective energy consumption corresponding to the load applied. Our proposed system scored high in the average residual energy by the number of rounds compared to other methods such as k-means, LEACH-C, CHIRON, and Optimal-CBR. The first dead node was found after 500 rounds, showing that the proposed model has nodes with better reliability. It also showed a comparative analysis of the transmission rate of a packet concerning mobility speed among various methods. The proposed method has the highest ratio at all mobility speeds, i.e., 99.3, 99.1, 99, 98.8, and 98.6, and our proposed system has the lowest computational time of all the evaluated methods, 6 s.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. A review paper on wireless sensor network techniques in Internet of Things (IoT);Gulati;Mater. Today Proc.,2021

2. A survey of energy-aware cluster head selection techniques in wireless sensor network;John;Evol. Intell.,2019

3. Multi-Objective Optimization in WSN: Opportunities and Challenges;Singh;Wirel. Pers. Commun.,2021

4. Sun, W., Tang, M., Zhang, L., Huo, Z., and Shu, L. A Survey of Using Swarm Intelligence Algorithms in IoT. Sensors, 2020. 20.

5. Natarajan, Y., Raja, R.A., Kousik, D.N., and Johri, P. Improved energy efficient wireless sensor networks using multicast particle swarm optimization. Proceedings of the International Conference on Innovative Advancement in Engineering & Technology (IAET).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3