Deep Learning Dataset for Estimating Burned Areas: Case Study, Indonesia

Author:

Prabowo Yudhi,Sakti Anjar Dimara,Pradono Kuncoro Adi,Amriyah Qonita,Rasyidy Fadillah Halim,Bengkulah Irwan,Ulfa Kurnia,Candra Danang Surya,Imdad Muhammad Thufaili,Ali Shadiq

Abstract

Wildland fire is one of the most causes of deforestation, and it has an important impact on atmospheric emissions, notably CO2. It occurs almost every year in Indonesia, especially during the dry season. Therefore, it is necessary to identify the burned areas from remote sensing images to establish the zoning map of areas prone to wildland fires. Many methods have been developed for mapping burned areas from low-resolution to medium-resolution satellite images. One of the popular approaches for mapping tasks is a deep learning approach using U-Net architecture. However, it needs a large amount of representative training data to develop the model. In this paper, we present a new dataset of burned areas in Indonesia for training or evaluating the U-Net model. We delineate burned areas manually by visual interpretation on Landsat-8 satellite images. The dataset is collected from some regions in Indonesia, and it consists of 227 images with a size of 512 × 512 pixels. It contains one or more burned scars or only the background and its labeled masks. The dataset can be used to train and evaluate the deep learning model for image detection, segmentation, and classification tasks related to burned area mapping.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3