Analogies in the Analysis of the Thermal Status of Batteries and Internal Combustion Engines for Mobility

Author:

Sequino LuigiORCID,Mancaruso EzioORCID,Vaglieco Bianca MariaORCID

Abstract

Thermal management is an important research area for the automotive sector in order to make high-efficiency and low-impact future vehicles. The transition from internal combustion engines to battery systems in the automotive field requires new skills to be achieved in the shortest possible time. The well-consolidated knowledge of thermal management of engine systems can be rearranged to face new challenges regarding the thermal control of batteries. The present work aims to show the analogies between the thermal behavior of an engine component, such as the piston, and of a battery. The thermodynamic processes involved during the operation are described, experimentally investigated, and modeled. The external temperature of the piston window is measured once per cycle with a K-type sheathed thermocouple, while the surface temperature of the battery is detected via infrared imaging. An almost-fixed stabilization time of 500 s is observed for the engine while it varies with the current load for the battery ranging from 1800 s to 3000 s, for the tested cases. Different temperature increments are also observed. Two mono-dimensional (1D) models of heat transfer are built using the finite-difference method. Good agreement with the experimental data is quantitatively demonstrated by a Normalize Root Mean Square Error lower than 0.07 for all the test cases and systems, except for the battery charging phase. The analysis of the temperature provides an estimation of the heat losses for the two systems, spanning from 15% to 27% for the engine and from 6% to 10% for the battery. The analysis carried out in this work can provide a methodology to understand and improve the thermal management of the new mobility system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3