Effects of Bending of Fluidic Oscillators on Aerodynamic Performance of an Airfoil with a Flap

Author:

Kim Nam-Hun,Kim Kwang-YongORCID

Abstract

The present work investigated the effects of bending the outlet nozzles of fluidic oscillators installed on the NACA0015 airfoil with a flap on the flow control performance and, thus, the aerodynamic performance of the airfoil. The effects of bending on fluidic oscillators have not been reported so far in previous works. The aerodynamic analysis was performed numerically using unsteady Reynolds-averaged Navier-Stokes equations. Three different cases were considered: Case 1 changes only the bending angle with a fixed pitch angle, Case 2 changes only the pitch angle without bending, and Case 3 changes both the bending and pitch angles. Although the bending of the oscillators was introduced inevitably due to a geometrical limitation in the installation, the results indicated that the bending rather improved the lift coefficient and lift-to-drag ratio of the airfoil by improving the characteristics of the fluidic oscillators, such as the jetting angle and peak velocity ratio.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3