Occupancy Estimation from Blurred Video: A Multifaceted Approach with Privacy Consideration

Author:

Sourav Md Sakib Galib1,Yavari Ehsan1,Gao Xiaomeng1,Maskrey James1ORCID,Zheng Yao1,Lubecke Victor M.1,Boric-Lubecke Olga1

Affiliation:

1. Department of Electrical & Computer Engineering, University of Hawai’i at Manoa, Honolulu, HI 96822, USA

Abstract

Building occupancy information is significant for a variety of reasons, from allocation of resources in smart buildings to responding during emergency situations. As most people spend more than 90% of their time indoors, a comfortable indoor environment is crucial. To ensure comfort, traditional HVAC systems condition rooms assuming maximum occupancy, accounting for more than 50% of buildings’ energy budgets in the US. Occupancy level is a key factor in ensuring energy efficiency, as occupancy-controlled HVAC systems can reduce energy waste by conditioning rooms based on actual usage. Numerous studies have focused on developing occupancy estimation models leveraging existing sensors, with camera-based methods gaining popularity due to their high precision and widespread availability. However, the main concern with using cameras for occupancy estimation is the potential violation of occupants’ privacy. Unlike previous video-/image-based occupancy estimation methods, we addressed the issue of occupants’ privacy in this work by proposing and investigating both motion-based and motion-independent occupancy counting methods on intentionally blurred video frames. Our proposed approach included the development of a motion-based technique that inherently preserves privacy, as well as motion-independent techniques such as detection-based and density-estimation-based methods. To improve the accuracy of the motion-independent approaches, we utilized deblurring methods: an iterative statistical technique and a deep-learning-based method. Furthermore, we conducted an analysis of the privacy implications of our motion-independent occupancy counting system by comparing the original, blurred, and deblurred frames using different image quality assessment metrics. This analysis provided insights into the trade-off between occupancy estimation accuracy and the preservation of occupants’ visual privacy. The combination of iterative statistical deblurring and density estimation achieved a 16.29% counting error, outperforming our other proposed approaches while preserving occupants’ visual privacy to a certain extent. Our multifaceted approach aims to contribute to the field of occupancy estimation by proposing a solution that seeks to balance the trade-off between accuracy and privacy. While further research is needed to fully address this complex issue, our work provides insights and a step towards a more privacy-aware occupancy estimation system.

Funder

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3