Study of the Bias of the Initial Phase Estimation of a Sinewave of Known Frequency in the Presence of Phase Noise

Author:

Alegria Francisco A. C.1ORCID,Xie Lian1ORCID,Pasadas Dário1ORCID

Affiliation:

1. Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1649-004 Lisboa, Portugal

Abstract

The estimation of the parameters of a sinusoidal signal is of paramount importance in various applications in the fields of sensors, signal processing, parameter estimation, and device characterization, among others. The presence, in the measurement system, of non-ideal phenomena such as additive noise in the signals, phase noise in the stimulus generation, jitter in the sampling system, frequency error in the experimental setup, among others, leads to increased uncertainty and bias in the estimated quantities obtained by least squares methods and those derived from them. Therefore, from a metrological point of view, it is important to be able to theoretically predict and quantify those uncertainties in order to properly design the measurement system and its parameters, such as the number of samples to acquire or the stimulus signal amplitude to use to minimize the uncertainty in the estimated values. Previous works have shown that the presence of these non-ideal phenomena leads to increased uncertainty and bias in the estimation of the sinewave amplitude. The present work complements this knowledge by focusing specifically on the effect of phase noise and sampling jitter in the bias of the initial phase estimation of a sinusoidal signal of known frequency (three‑parameter sine fitting procedure). A theoretical derivation of the bias of initial phase estimation that takes into consideration the presence of phase noise in the sinewave is presented. Since a Taylor series approximation was used where only the first term was retained, it was necessary to validate the analytical derivations with numerical simulations using a Monte Carlo type of procedure. This process was applied to different conditions regarding the phase noise standard deviation, initial phase value, and number of samples. It is concluded that, in most scenarios, initial phase estimation using sine fitting is unbiased in the presence of phase noise or jitter. It is shown, however, that in cases of extremely high phase noise standard deviation and a very low number of samples, a bias occurs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3