Abstract
In this article, a class of mean-field-type games with discrete-continuous state spaces is considered. We establish Bellman systems which provide sufficiency conditions for mean-field-type equilibria in state-and-mean-field-type feedback form. We then derive unnormalized master adjoint systems (MASS). The methodology is shown to be flexible enough to capture multi-class interaction in epidemic propagation in which multiple authorities are risk-aware atomic decision-makers and individuals are risk-aware non-atomic decision-makers. Based on MASS, we present a data-driven modelling and analytics for mitigating Coronavirus Disease 2019 (COVID-19). The model integrates untested cases, age-structure, decision-making, gender, pre-existing health conditions, location, testing capacity, hospital capacity, and a mobility map of local areas, including in-cities, inter-cities, and internationally. It is shown that the data-driven model can capture most of the reported data on COVID-19 on confirmed cases, deaths, recovered, number of testing and number of active cases in 66+ countries. The model also reports non-Gaussian and non-exponential properties in 15+ countries.
Subject
Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献