Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept

Author:

Mireștean Camil Ciprian12ORCID,Iancu Roxana Irina34,Iancu Dragoș Petru Teodor56

Affiliation:

1. Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania

2. Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania

3. Oral Pathology Department, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania

4. Department of Clinical Laboratory, “St. Spiridon” Emergency Universitary Hospital, 700111 Iași, Romania

5. Oncology and Radiotherapy Department, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania

6. Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania

Abstract

Artificial intelligence (AI) and in particular radiomics has opened new horizons by extracting data from medical imaging that could be used not only to improve diagnostic accuracy, but also to be included in predictive models contributing to treatment stratification of cancer. Head and neck cancers (HNC) are associated with higher recurrence rates, especially in advanced stages of disease. It is considered that approximately 50% of cases will evolve with loco-regional recurrence, even if they will benefit from a current standard treatment consisting of definitive chemo-radiotherapy. Radiotherapy, the cornerstone treatment in locally advanced HNC, could be delivered either by the simultaneous integrated boost (SIB) technique or by the sequential boost technique, the decision often being a subjective one. The principles of radiobiology could be the basis of an optimal decision between the two methods of radiation dose delivery, but the heterogeneity of HNC radio-sensitivity makes this approach difficult. Radiomics has demonstrated the ability to non-invasively predict radio-sensitivity and the risk of relapse in HNC. Tumor heterogeneity evaluated with radiomics, the inclusion of coarseness, entropy and other first order features extracted from gross tumor volume (GTV) in multivariate models could identify pre-treatment cases that will benefit from one of the approaches (SIB or sequential boost radio-chemotherapy) considered the current standard of care for locally advanced HNC. Computer tomography (CT) simulation and daily cone beam CT (CBCT) could be chosen as imaging source for radiomic analysis.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3