Temporal Network Link Prediction Based on the Optimized Exponential Smoothing Model and Node Interaction Entropy

Author:

Tian Songyuan1,Zhang Sheng1,Mao Hongmei1,Liu Rui1,Xiong Xiaowu1

Affiliation:

1. School of Information Engineering, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang 330063, China

Abstract

Link prediction accuracy in temporal networks is easily affected by the time granularity of network snapshots. This is due to the insufficient information conveyed by snapshots and the lack of temporal continuity between snapshots. We propose a temporal network link prediction method based on the optimized exponential smoothing model and node interaction entropy (OESMNIE). This method utilizes fine-grained interaction information between nodes within snapshot periods and incorporates the information entropy theory to improve the construction of node similarity in the gravity model as well as the prediction process of node similarity. Experiment results on several real-world datasets demonstrate the superiority and reliability of this proposed method in adapting to link prediction requirements over other methods across different time granularities of snapshots, which is essential for studying the evolution of temporal networks.

Funder

The National Natural Science Foundation of China

The Science and Technology Project of Jiangxi Province Education Department

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3