AI-Enabled Consensus Algorithm in Human-Centric Collaborative Computing for Internet of Vehicle

Author:

Sun Chenxi1ORCID,Li Danyang1ORCID,Wang Beilei1,Song Jie1ORCID

Affiliation:

1. Software College, Northeastern University, Shenyang 112000, China

Abstract

With the enhanced interoperability of information among vehicles, the demand for collaborative sharing among vehicles increases. Based on blockchain, the classical consensus algorithms in collaborative IoV (Internet of Vehicle), such as PoW (Proof of Work), PoS (Proof of Stake), and DPoS (Delegated Proof of Stake), only consider the node features, which is hard to adapt to the immediacy and flexibility of vehicles. On the other hand, classical consensus algorithms often require mass computing, which undoubtedly increases the communication overhead, resulting in the inability to achieve collaborative IoV under asymmetric networks. Therefore, proposing a low failure rate consensus algorithm that takes into account running time and energy consumption becomes a major challenge in IoV applications. This paper proposes an AI-enabled consensus algorithm with vehicle features, combining vehicle-based metrics and neural networks. First, we introduce vehicle-based metrics such as vehicle online time, performance, and behavior. Then, we propose an integral model and a hierarchical classification method, which combine with a BP neural network to obtain the optimal solution for interconnection. Among them, we also use Informer to predict the future online duration of vehicles, which effectively solves the situation that the primary node vehicle drops off in collaborative IoV. Finally, the experimentations show that the vehicle-based metrics eliminate the problem of the primary node vehicle being offline, which realizes the collaborative IoV considering vehicle features. Meanwhile, it reduces the vehicle network system delay and energy consumption.

Funder

Liaoning Provincial Transportation Investment Group Scientific Research Project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Intersection of Artificial Intelligence and Blockchain Technology in Complex Systems: A Systematic Review;Advances in Science, Technology & Innovation;2024

2. Revolutionizing Cloud Computing: Evaluating the Influence of Blockchain and Consensus Algorithms;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3